The Gibbons–Hawking Ansatz in Generalized Kähler Geometry

نویسندگان

چکیده

We derive a local ansatz for generalized K\"ahler surfaces with nondegenerate Poisson structure and biholomorphic $S^1$ action which generalizes the classic Gibbons-Hawking invariant hyperK\"ahler manifolds, allows choice of one arbitrary function. By imposing K\"ahler-Ricci soliton equation, or equivalently equations type IIB string theory, construction becomes rigid, we classify all complete solutions smallest possible symmetry group.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress in Kähler Geometry ∗

In recent years, there are many progress made in Kähler geometry. In particular, the topics related to the problems of the existence and uniqueness of extremal Kähler metrics, as well as obstructions to the existence of such metrics in general Kähler manifold. In this talk, we will report some recent developments in this direction. In particular, we will discuss the progress recently obtained i...

متن کامل

Torsion in Almost Kähler Geometry *

We study almost Kähler manifolds whose curvature tensor satisfies the second curvature condition of Gray (shortly AK 2). This condition is interpreted in terms of the first canonical Hermitian connection. It turns out that this condition forces the torsion of this connection to be parallel in directions orthogonal to the Kähler nullity of the almost complex structure. We prove a local structure...

متن کامل

On Nearly Kähler Geometry *

We consider complete nearly Kähler manifolds with the canonical Hermitian connection. We prove some metric properties of strict nearly Kähler manifolds and give a sufficient condition for the reducibility of the canonical Hermitian connection. A holonomic condition for a nearly Kähler manifold to be a twistor space over a quaternionic Kähler manifold is given. This enables us to give classifica...

متن کامل

Tensor supermultiplets and toric quaternion - Kähler geometry †

We review the relation between 4n-dimensional quaternion-Kähler metrics with n + 1 abelian isometries and superconformal theories of n + 1 tensor supermultiplets. As an application we construct the class of eight-dimensional quaternion-Kähler metrics with three abelian isometries in terms of a single function obeying a set of linear second-order partial differential equations. Talk given by F.S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2022

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-022-04329-6